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Overview

• This presentation discusses the 

development of a set of algorithms to do 

event precursor analysis on intensity data 

from a laser.from a laser.

• The data is from a well-studied (NH_3) 

laser system that has chaotic behavior.



Laser Data I

• The laser undergoes periods of buildup of 

intensity followed by a sudden collapse in 

intensity.  

• Sometimes the collapse is significant, and • Sometimes the collapse is significant, and 

other times it is relatively small.

• It is hard to predict what type of collapse 

will occur (i.e., it is a chaotic process).



Laser Data II

• It is known that one can approximate the 

dynamical behavior of the laser using 

ideas from nonlinear dynamical systems.

• dx/dt = s(y-x) • dx/dt = s(y-x) 

dy/dt = rx - y - xz

dz/dt = xy - bz 

• The values of s, r, and b determine the 

nature of the chaotic attractor.
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Prognostic Problem

• Given a small set of data (1000 points) 

develop an algorithm that can:

– Predict the future dynamics of this system.

– Generate a signal that represents the – Generate a signal that represents the 

confidence in the prediction.



Method

• We address this problem using the theory of 

Gaussian Processes (which are related to 

Kernel Methods), which assumes that any 

subset of data for a vector X is Gaussian 

distributed (from wikipedia).distributed (from wikipedia).

Using characteristic functions of random variables, we can 

formulate the Gaussian property as follows:{Xt}t ∈ T is 

Gaussian if and only if for every finite set of indices t1, ..., tk
there are positive reals σl j and reals µj such that

The numbers σl j and µj can be shown to be the 

covariances and means of the variables in the process.



Approach

• Using delay coordinate embedding (and 

thus Takens’ Theorem) we build a 

Gaussian Process Regression (GPR) to 

predict:predict:
P(X(t+1)|X(t), X(t-1), …, X(t-d)) = P(X(t+1)|X*(t))

• Once this distribution is known, we can 

make predictions through iterating the 

distribution.



One Step Ahead Predictions

GPGP

X*(t) P(X(t+1)|X*(t))



Iterated Predictions

GP P(X(t+1)|X*(t))GP

X*(t) P(X(t+1)|X*(t))

P(X(t+1)|X*(t))

i.e., we feed the output of the model into its input to make a prediction of 

P(X(t+2) | [P(X(t+1), X(t), X(t-1), … X(t-d+1])



100-step ahead forecasts

• We iterate the Gaussian Process 100 

times to generate this time series.

• Forecasting metric:  normalized mean • Forecasting metric:  normalized mean 

squared error.

– Trial A: 0.30

– Trial B: 0.16
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GP Trial A:  NMSE = 0.30
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GP Trial A:  NMSE = 0.30

Actual error increases as does the

uncertainty.
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GP Trial B:  NMSE = 0.16
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Very high accuracy and

corresponding low uncertainty



Linear Model:  NMSE = 0.83
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Bagged Neural Networks:  NMSE = 0.37 
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Note:  although this model has a reasonable performance in this example,

we found that it had significant run-to-run variability in performance.



Comparison



Statistical Comparison of GP’s and Neural Networks



Results

• We have shown that we can make iterated 

forecasts and detect a precursor to the 

sudden drop in intensity using kernel 

methods.methods.

• We can generate a meaningful measure of 

prediction certainty.

• This quantity seems to indicate substantial 

increases in uncertainty near the collapse.



Further Work

• Variability due to model uncertainty

• Significant testing with respect to forecast 

variability and quality of precursor 

detection.detection.

• Analysis of forecast horizon.

• Test methods for use on Liquid Propulsion 

systems and ISS-CMG data sets.
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